IWS 3 (10 points) ## Easy Level (0.1 points each * 15 problems = 1.5 points total) - 1. If 25.0 mL of a 0.02 M EDTA solution is required to titrate 50.0 mL of a Mg^{2+} solution, what is the molarity of the Mg^{2+} solution? - 2. In a titration of 0.1 M Fe $^{2+}$ with 0.1 M Ce $^{4+}$, what is the equivalence point in terms of Fe $^{2+}$ moles? - 3. If 30.0 mL of 0.1 M EDTA solution is used to titrate 0.5 g of CaCO₃, what is the purity of CaCO₃ in the sample? - 4. How many moles of MnO_4^- are required to reach the endpoint in the titration of 0.1 M Fe²⁺ solution (25 mL)? - 5. Calculate the concentration of Zn^{2+} in a solution if 40 mL of 0.05 M EDTA is required to reach the endpoint. - 6. How much 0.01 M EDTA is needed to titrate 100 mL of 0.02 M Pb²⁺ solution? - 7. If 25.0 mL of 0.02 M $Na_2S_2O_3$ is needed to titrate I_2 in a redox titration, calculate the molar mass of $Na_2S_2O_3$. - 8. If 50 mL of 0.1 M Cr³⁺ is titrated with 0.1 M EDTA, how many moles of Cr³⁺ are present at the equivalence point? - 9. What is the molarity of the Ca²⁺ ion in a solution if 25 mL of 0.01 M EDTA is needed to titrate 50 mL of the solution? - 10. What indicator would you use in a redox titration involving Fe²⁺ and Ce⁴⁺, and why? - 11. How many moles of KMnO₄ are needed to reach the endpoint in a titration of 0.1 M Fe²⁺ (25 mL)? - 12. Calculate the concentration of a Pb²⁺ solution if 50 mL of 0.1 M EDTA is required for titration. - 13. How many grams of Na₂S₂O₃ are required to titrate 25 mL of a 0.05 M I₂ solution? - 14. What volume of 0.01 M EDTA is needed to titrate 100 mL of 0.02 M Ni²⁺ solution? - 15. How many moles of MnO₄⁻ are required to titrate 25 mL of a 0.1 M Fe²⁺ solution? ## **Medium Level** (0.3 points each * 15 problems = 4.5 points total) - 16. In a titration between Fe²⁺ and Ce⁴⁺, calculate the number of electrons transferred at the equivalence point. - 17. If 25 mL of 0.1 M EDTA is used to titrate 50 mL of Zn²⁺ solution, calculate the stoichiometry of the reaction. - 18. Draw and analyze the titration curve of a titration between 0.1 M Fe²⁺ and 0.1 M MnO₄⁻. - 19. A solution of Zn^{2+} is titrated with EDTA using a back titration method. If 25 mL of 0.1 M EDTA is required to reach the endpoint, calculate the concentration of Zn^{2+} . - 20. Determine the molarity of a Cr³⁺ solution if 50 mL of 0.02 M EDTA is required to titrate 100 mL of the solution. - 21. Given the formation constant K_f for $[Cu(EDTA)]^{2^-}$ is 1.0×10^{18} , calculate the concentration of free Cu^{2^+} in a solution after titration with EDTA. - 22. Explain how you would detect the endpoint in a redox titration between Fe²⁺ and KMnO₄. - 23. A 100 mL sample of water requires 35 mL of 0.01 M EDTA for titration. Calculate the hardness of the water in ppm CaCO₃. - 24. How would you prepare a buffer solution to maintain a pH of 10 for the titration of Zn²⁺ with EDTA? - 25. Determine the change in oxidation number for Mn in the titration of Fe²⁺ with KMnO₄. - 26. Calculate the equilibrium constant for the redox reaction between Ce⁴⁺ and Fe²⁺, given their standard electrode potentials. - 27. Which indicator would you choose for a titration between Zn²⁺ and EDTA, and why? - 28. Calculate the mass of Fe²⁺ in a solution if 25 mL of 0.1 M KMnO₄ is required for titration. - 29. In the redox titration of Fe^{2+} with MnO_4^- , calculate the moles of MnO_4^- needed to oxidize 1 mole of Fe^{2+} . - 30. Calculate the concentration of Fe²⁺ in a solution if 50 mL of 0.1 M Ce⁴⁺ is required for titration. ## **Hard Level** (0.4 points each * 10 problems = 4.0 points total) - 31. In a titration involving Fe²⁺ and EDTA, calculate the concentration of Fe²⁺ in a 100 mL solution if 50 mL of 0.1 M EDTA is required. - 32. Given the equilibrium constant for the formation of $[Fe(EDTA)]^{2-}$ is 1.0×10^{25} , calculate the concentration of free Fe^{2+} in a solution after titration. - 33. A solution contains both Zn^{2+} and Mg^{2+} ions. Calculate the concentration of each ion after titration with 0.1 M EDTA. - 34. In the titration of Fe^{2+} with $KMnO_4$, analyze the redox reaction in terms of electron transfer and balancing the equation. - 35. Calculate the pH of a buffer solution used in the titration of Fe²⁺ with Ce⁴⁺, given the pKa of the buffer components. - 36. Discuss the kinetic factors affecting the rate of the redox titration between Fe²⁺ and MnO₄⁻. - 37. Calculate the stability constant of a complex formed between Co²⁺ and EDTA during a titration. - 38. Given the redox potentials of MnO_4^- and Fe^{2+} , calculate the cell potential during the titration process. - 39. Calculate the concentration of Cr³⁺ in a solution after titration with 0.05 M EDTA, considering the complexation constant. - 40. Interpret the titration curve for the titration of Cr³⁺ with EDTA, focusing on the different regions and the equivalence point.